Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol
نویسندگان
چکیده
BACKGROUND Crude glycerol in the waste stream of the biodiesel production process is an abundant and renewable resource. However, the glycerol-based industry is usually afflicted by the cost for refinement of crude glycerol. This issue can be addressed by developing a microbial process to convert crude glycerol to value-added chemicals. In this study, Escherichia coli was implemented for the production of n-butanol based on the reduced nature of glycerol. RESULTS The central metabolism of E. coli was rewired to improve the efficiency of glycerol metabolism and provide the reductive need for n-butanol in E. coli. This was carried out in several steps by (1) forcing the glycolytic flux through the oxidation pathway of pyruvate, (2) directing the gluconeogenic flux into the oxidative pentose phosphate pathway, (3) enhancing the anaerobic catabolism for glycerol, and (4) moderately suppressing the tricarboxylic acid cycle. Under the microaerobic condition, the engineered strain enabled the production of 6.9 g/L n-butanol from 20 g/L crude glycerol. The conversion yield and the productivity reach 87% of the theoretical yield and 0.18 g/L/h, respectively. CONCLUSIONS The approach by rational rewiring of metabolic pathways enables E. coli to synthesize n-butanol from glycerol in an efficient way. Our proposed strategies illustrate the feasibility of manipulating key metabolic nodes at the junction of the central catabolism. As a result, it renders the intracellular redox state adjustable for various purposes. Overall, the developed technology platform may be useful for the economic viability of the glycerol-related industry.
منابع مشابه
Metabolic engineering of Escherichia coli for 1-butanol production.
Compared to ethanol, butanol offers many advantages as a substitute for gasoline because of higher energy content and higher hydrophobicity. Typically, 1-butanol is produced by Clostridium in a mixed-product fermentation. To facilitate strain improvement for specificity and productivity, we engineered a synthetic pathway in Escherichia coli and demonstrated the production of 1-butanol from this...
متن کاملMetabolic engineering of a 1,2-propanediol pathway in Escherichia coli.
1,2-Propanediol (1,2-PD) is a major commodity chemical that is currently derived from propylene, a nonrenewable resource. A goal of our research is to develop fermentation routes to 1,2-PD from renewable resources. Here we report the production of enantiomerically pure R-1,2-PD from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes (E. coli gldA or Klebsiella pneum...
متن کاملA Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum
Butanol, produced via traditional acetone-butanol-ethanol (ABE) fermentation, suffers from low yield and productivity. In this article, a non-ABE butanol production process is reviewed. Clostridium pasteurianum has a non-biphasic metabolism, alternatively producing 1,3-propanediol (PDO)-butanol-ethanol, referred to as PBE fermentation. This review discusses the advantages of PBE fermentation wi...
متن کاملMetabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
BACKGROUND Increasing energy costs and environmental concerns have motivated engineering microbes for the production of "second generation" biofuels that have better properties than ethanol. RESULTS AND CONCLUSION Saccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium ...
متن کاملEditorial: chemicals and bioproducts from biomass
© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if c...
متن کامل